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1 Introduction

The constant increase in the volume of textual data
has led to the development of various algorithms in-
tended to summarize and understand unstructured
textual data (Peter et al., 2015). A solution to this
problem is topic modeling, a statistical approach
for extracting core themes or topics from large text
corpora. Thus, when a topic modeling algorithm
is applied to a large corpus of documents, such as
a collection of news articles, the results might in-
clude a list of topics, such as politics, economy, or
sports. Usually, these topics are described by a set
of representative words or phrases ranked accord-
ing to their importance for the topic (El-Assady
et al., 2018).

Although powerful, topic models do not always
generate understandable or useful results for hu-
mans (Bianchi et al., 2021; Harrando and Troncy,
2021). Poor quality topics are those that: (1) con-
tain incoherent or loosely connected terms (Smith
et al., 2018; Wang et al., 2019; Bianchi et al., 2021);
(2) are misaligned with an expert’s understanding
of the domain (Smith et al., 2018), (3) or do not
match the users’ current information needs (Hoque
and Carenini, 2015; Wang et al., 2019).

Part of this problem is because most topic mod-
eling approaches focus on the co-occurrence of
terms as the primary signal to detect the seman-
tic relations among them (Harrando and Troncy,
2021). As a result, these algorithms do not capture
semantic and lexical relations between words that
are not present in the corpus (Harrando and Troncy,
2021; Song et al., 2020; Hong et al., 2020). Prior
work has suggested using external knowledge to
overcome this drawback (Hong et al., 2020), and
common sense knowledge is one promising alter-
native (Harrando and Troncy, 2021). While there
have been some efforts to incorporate this general
human knowledge to improve the interpretability
of automatically generated topics (Harrando and

Troncy, 2021; Rajagopal et al., 2013), none of these
algorithms supports multimodal data.

To mitigate this problem, in this paper, we pro-
pose a new topic modeling algorithm that leverages
common sense knowledge to identify coherent top-
ics in multimodal data. We train and evaluate our
algorithm on a multimodal dataset of 100,000 An-
tisemitic/Islamophobic posts from 4chan. Our re-
sults show that injecting common sense knowledge
into a topic modeling algorithm might improve the
quality of topics.

We summarize prior work on common sense
based topic modeling algorithms in Section 2. Sec-
tion 3 details our proposed topic modeling algo-
rithm, while Section 4 reports our evaluation mech-
anisms and findings. Section 5 discusses our results
and provides our lessons learned, limitations and
future work. Finally, Section 6 provides our con-
clusions.

Ethical considerations. We emphasize that we
rely entirely on publicly available and anonymous
data shared on 4chan’s /pol/. We follow standard
ethical guidelines (Rivers and Lewis, 2014), like re-
porting our results on aggregate and not attempting
to deanonymize users.

Disclaimer. This manuscript contains Antisemitic
and Islamophobic textual and graphic elements that
are offensive and are likely to disturb the reader.

2 Common sense based topic modeling
algorithms

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is one of the most popular topic model-
ing techniques (Meeks and Weingart, 2012; Qiang
et al., 2020). It is based on the assumption that
document collections have latent topics, which are
typically presented to users via its top-N highest
probability words (Lau et al., 2014). The algorithm
models the documents as a bag of words to identify
meaningful topics. Unfortunately, it does not repre-



sent the documents accurately when its content is
short (Liu et al., 2018), lacks regular patterns (Liu
et al., 2018), and the relations between some terms
are not explicitly present in the training dataset.
(Harrando and Troncy, 2021).

Prior work has suggested that using external
knowledge, such as common sense, might help
obtain a better representation of the content of doc-
uments (Shah et al., 2021). Common sense has
already been used for different tasks such as ques-
tion answering (Bauer et al., 2018), sentiment anal-
ysis (Ghosal et al., 2020), and dialogue (Young
et al., 2018). However, only a few attempts into
incorporating common sense knowledge into topic
modeling algorithms exist (Rajagopal et al., 2013;
Harrando and Troncy, 2021).

One of these approaches is the Common Sense
Topic Model (CSTM) (Harrando and Troncy,
2021). This recently proposed topic modeling
technique augments clustering with knowledge ex-
tracted from the ConceptNet (Speer et al., 2017)
to find topics that are more interpretable by hu-
mans. After evaluating this approach on several
datasets, the authors claim their proposal generally
performs better than the traditional LDA. However,
when the quality of the topics is calculated based
on the coherence of the top ten terms, LDA is still
performing better.

Another common sense based topic modeling ap-
proach was also proposed (Rajagopal et al., 2013).
In this algorithm, every document is represented
as a bag of concepts instead of the traditional bag
of words. These concepts might be keywords or
phrases from the corpus. The authors represent
the documents as the union of the set of common
sense knowledge related to each associated concept.
Then, they create vector representations of these
documents and cluster them using group average
agglomerative clustering. An evaluation of their
approach on the 20 newsgroup dataset shows that
their algorithm performs better than LDA in preci-
sion, recall, and F-measure. However, the authors
did not evaluate the coherence of the resulting top-
ics, which is an important metric to identify the
quality of the resulting topics (Röder et al., 2015).

All the reviewed approaches might be helpful
to identify topics over textual content. However,
with the proliferation of web-based social media, it
is necessary to develop topic modeling algorithms
that support multimodal datasets. Social media
users post both textual and image data to discuss

different topics (Mittos et al., 2020). These im-
ages might be valuable information that might help
obtain more meaningful topics. Nevertheless, to
the best of our knowledge, no attempt to incorpo-
rate common sense knowledge in multimodal topic
modeling algorithms has been proposed.

3 Proposal

This paper proposes a new topic modeling algo-
rithm that leverages common sense knowledge to
identify coherent topics in a multimodal dataset.
To do so, we implement a five-step methodology
(see Figure 1). First, we retrieve Antisemitic and
Islamophobic multimodal posts from 4chan (see
Section 3.1). Second, we create a document repre-
sentation of the content of those posts (see Section
3.2), and we extend that information by using a
popular common sense knowledge base. Third, we
reduce the dimensions of these documents’ rep-
resentations (see Section 3.3) before categorizing
them into meaningful topics (see Section 3.3.1).
Finally, we retrieve the most relevant keywords and
most representative images for each topic.

3.1 Dataset

This work focuses on 4chan, particularly the Polit-
ically Incorrect board (/pol/). /pol/ is the main
board for discussing world events and politics
and is infamous for spreading conspiracy theo-
ries (Zannettou et al., 2017; Tuters et al., 2018)
and racist/hateful content (Hine et al., 2017; Zan-
nettou et al., 2020). We use the publicly available
dataset released by (González-Pizarro and Zan-
nettou, 2022); this dataset includes 573,513 An-
tisemitic/Islamophobic multimodal posts shared on
4chan in the period between July 1, 2016, and De-
cember 31, 2017.

Why this dataset? Social media sites such as Twit-
ter, Facebook, and 4chan allow users to share their
ideas and opinions instantly. However, there are
several ill consequences, such as online harassment,
trolling, cyber-bullying, fake news, and hate speech.
We believe that exploring these conversations could
help us understand how these communities interact
on these platforms. Moreover, it is the first step
before creating automated hate speech detection
and content moderation systems.

3.2 Document representation

We represent documents as a combination of sev-
eral elements: (1) their textual and image con-
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Figure 1: Five-step methodology of our common sense based multimodal topic modeling algorithm

tent, (2) their image caption, (3) and the common
sense based expansions of the textual content of
the post and its image caption. We encode each
element separately using the textual encoder or
image encoder from the CLIP model, obtaining a
high-dimensional vector for each component. The
concatenation of these embeddings represents a
document.

3.2.1 OpenAI’s CLIP
OpenAI recently released a model called Con-
trastive Language-Image Pre-training (CLIP) (Rad-
ford et al., 2021) that leverages Contrastive Learn-
ing to generate representations across text and im-
ages. The model relies on a text encoder and
an image encoder that maps text and images to
a high-dimensional vector space. Subsequently,
the model is trained to minimize the cosine dis-
tance between similar text/image pairs. To train
CLIP, OpenAI created a vast dataset that consists
of 400M pairs of text/images collected from var-
ious Web sources and covers an extensive set of
visual concepts1. By training CLIP with this vast
dataset, the model learns general visual representa-
tions and how these representations are described
using natural language, which results in the model
obtaining general knowledge in various topics (e.g.,
identifying persons, objects). In this work, we use
the CLIP model to extract representations of the
textual and image content of each 4chan post, its
image caption, and the common sense based exten-
sions of the textual content of the post and its image
caption (see Figure 1 Document representation).

3.2.2 Knowledge Base
We expand the textual content of the post and its
image caption based on relevant information from
ConceptNet (Speer et al., 2017). This is a large-
scale concept-centric knowledge base (Chakrabarty
et al., 2021) that models lexical and semantic rela-

1The exact methodology for creating this dataset was not
made publicly available by OpenAI.

tionships (e.g., “party” like “flu”; “flu” not desires
“person”). We choose ConceptNet given its vast
number of concepts (approximately 1.5M nodes)
and types of relations (34 in total).

3.2.3 Common sense based expansions
We follow several steps to get the common sense
based expansions of the textual content of the posts
and their image caption. First, we identify their top
j relevant terms by using TF-IDF (Ramos et al.,
2003). Then, we retrieve the shortest path between
each pair of relevant terms in our common sense
knowledge base. We only select paths of length
lower or equal to k. Finally, we convert the re-
trieved relations to natural language using a Con-
ceptNet relation template2. Table 1 shows exam-
ples of these expansions.

3.2.4 Image captioning
We believe that images can provide valuable in-
formation. Thus, we use the image encoder of
the CLIP model to get the vector representation of
images. We also believe that we require informa-
tion beyond the content of the images (Wu et al.,
2021) to identify meaningful and coherent topics.
We obtain this additional information by getting
the image’s caption and its common sense based
extension.

We use ClipCap (Mokady et al., 2021) to get the
caption of images. ClipCap is a CLIP-based image
captioning technique that does not require addi-
tional annotations, and according to the authors, it
can be applied to any data. Figure 2 shows exam-
ples of generated captions after using ClipCap in
our dataset.

3.3 Dimensionality reduction
One limitation of HDBSCAN, the clustering al-
gorithm that we choose to identify topics, is that

2Based on https://
github.com/JoshFeldman95/
Extracting-CK-from-Large-LM/blob/master/
templates/relation_map.json

https://github.com/JoshFeldman95/Extracting-CK-from-Large-LM/blob/master/templates/relation_map.json
https://github.com/JoshFeldman95/Extracting-CK-from-Large-LM/blob/master/templates/relation_map.json
https://github.com/JoshFeldman95/Extracting-CK-from-Large-LM/blob/master/templates/relation_map.json
https://github.com/JoshFeldman95/Extracting-CK-from-Large-LM/blob/master/templates/relation_map.json


Table 1: Sample of common based expansions. Relevant terms of the textual posts are highlighted in red

Textual content of the post Common sense based expansion

“I sure would. f*ck k*ke wars I refuse
to fight for canada. i would fight for the
usa though.”

Refuse is like disagreement. Disagreement is like fight.
Fight is like wars.

“Another white racist male trump voter” Voter is like person. Person wants racist. Person is like
male.

“I’m happy to accept your money and
work for you”

The last thing you do when you work is get_paid. Some-
thing you might do while get_paid is happy. money makes
people want work

(a) A girl with a book
(b) Politician with a daugh-
ter, and a daughter

(c) A cartoon of a bearded
man playing a trumpet

(d) The funniest comics on
the internet from this year

Figure 2: Examples of images captions generated by using CLIP over our dataset

its performance is reduced when there is high di-
mensional data. To mitigate this problem, we use
Uniform Manifold Approximation and Projection
for Dimension Reduction (UMAP) (McInnes et al.,
2018) to reduce the dimensions of the vectors of
our documents’ representations. This technique
has been shown to preserve better the local and
global features of high-dimensional data in lower
projected dimensions than other traditional tech-
niques such as PCA or t-SNE (Asyaky and Man-
dala, 2021; Grootendorst, 2022).

3.3.1 Clustering
We apply Hierarchical Density-based Spatial Clus-
tering of Application with Noise (HDBSCAN)
(McInnes and Healy, 2017) to identify the topics
(clusters) of the dataset. We choose it because it
can handle data with variable density, having better
performance than other traditional clustering algo-
rithms such as DBSCAN (Asyaky and Mandala,
2021).

3.4 Topic representation

The resulting clusters after applying HBDSCAN
are the resulting topics from the dataset. In this

model, a document can belongs only to one topic
(cluster). We obtain its most representative terms
and its most representative images for each topic.

3.4.1 Most relevant keywords
We use a cluster-based TF-IDF approach to identify
the most relevant keywords of topics (Grootendorst,
2022). To do so, we consider all documents in a
cluster as a single document by concatenating them.
Then, we apply TF-IDF over this long document to
identify the salient keywords. Thus, the relevance
R of a keyword k in a topic t is given by this
equation:

Rk,t = kfk,t ∗ log(1 +
A

kfk
) (1)

Where the keyword frequency kfk,t represents
the frequency of the keyword k in a topic t. Then,
we calculate the inverse topic frequency to mea-
sure how much information a keyword provide to
a topic. We calculate it by taking the logarithm of
the average number of words per topic A divided
by the frequency of keywords k across all topics.
We add one to the division within the logarithm
to output only positive values. As an example, we



show in Table 2 the top ten relevant keywords for
the topic #188, sorted by their c-TF-IDF score.

Table 2: Top ten relevant keywords for the topic #188

Keyword c-TF-IDF score

Bernie 0.0081
Hillary 0.0068
Kill 0.0037
Jew 0.0034
Jewish Mouths 0.0034
Shut lying 0.0034
Lying Jewish 0.0034
Mouths 0.0032
Clinton 0.0030
Shut 0.0028

3.4.2 Most representative Images
We are also interested in getting the representative
image points for each topic. We do that by calculat-
ing the centroid/medoid of each topic. The medoid
is the point in the cluster with the minimum aver-
age distance from all points in the cluster. Thus, we
retrieve the n image points closest to the medoid
of each topic. As an example, we show in Figure
3 some of the most relevant images for the topic
#188.

4 Evaluation and Results

This paper proposes a new topic modeling algo-
rithm that leverages common sense knowledge to
identify good-quality topics in multimodal data.
One method to identify the quality of automatically
generated topics is by measuring their coherence
(Newman et al., 2010), which can be automatically
calculated or reported by users (Efron et al., 2011;
Lau et al., 2014). Topics are coherent when there
are evident semantic relationships among their con-
stituent components (e.g., keywords, documents,
images) (Efron et al., 2011; Lau et al., 2014; Ka-
plan et al., 2010).

We evaluated our approach using a popular and
well-known automatic coherence measure (Röder
et al., 2015): Cv. This metric is based on the
co-occurrence of terms. First, it retrieves the co-
occurrence counts for the top words of topics using
a sliding window and generates a set of vectors
after calculating NPMI over these terms. Then,
it measures the similarity between these vectors
using cosine similarity. This metric gives a score

for an entire topic model. Notice that while the
perplexity measure has been widely used for topic
models evaluation, we do not consider it because
recent studies have shown that this metric is not cor-
related with human judgments (Xing et al., 2019).

We also evaluate our model regarding the num-
ber of topics, percentage of noise, and silhou-
ette score. The percentage of noise indicates the
amount of data that does not belong no any cluster.
Therefore, users might prefer models with a lower
percentage of noise. The silhouette score measures
how similar an object is to its cluster compared to
others. The silhouette scores range from -1 to +1.
In this context, a high value indicates that docu-
ments match their topic and are poorly related to
neighboring topics. While these metrics are impor-
tant to identify the quality of resulting clusters, they
do not provide information regarding the quality of
the topics. This explains why we focus our analysis
on the coherence score of the entire model.

Table 3 shows the number of topics, percent-
age of noise, silhouette, and coherence scores for
different document representations. We evaluate
our model every time we add a component to the
document representation. We report our results con-
sidering a random sample of 100,000 posts from
our dataset.

Our results show that adding common sense
based expansions generated from the post’s tex-
tual content slightly increases the coherence of the
entire model. We also find that including in the
document representation data related to the image
content (e.g., the image itself, image caption, com-
mon sense based expansion over the image caption)
decreases the coherence score.

We also observe that the number of topics in-
creases when adding components into the docu-
ment representation. Finally, the results show that
adding common sense based expansions generated
from the caption of images decreases the percent-
age of noise and increase the silhouette score.

5 Analysis

In this work, we explore the problem of finding co-
herent topics in multimodal data. We propose a new
algorithm that leverages common sense knowledge
to mitigate this problem. We represent the docu-
ments as a combination of several elements: their
textual and image content, their image caption, and
common sense based expansions generated from
their textual content and image caption. We train
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Figure 3: Top 1 (a), top 3 (b), top 8 (c) and top 10 (d) image for the topic #188

Table 3: Number of topics, percentage of noise, silhouette and coherence scores for different documents’ representa-
tions. The topic model was trained over a random sample of 100,000 posts of our selected dataset. The documents’
representation might include their textual content (Text), image content (Img.), image caption (Caption), and its
common sense based extensions over the textual content (CS) and over its image caption (CS on caption).

Document representation # Topics Noise (%) Silhouette Coherence

Text 251 31.3 0.27 0.466
Text + CS 258 31.9 0.27 0.474
Text + CS + Img. 721 37.1 0.12 0.457
Text + CS + Img. + Caption 793 32.4 0.24 0.421
Text + CS + Img. + Caption + CS on caption 859 28.0 0.33 0.415

and evaluate our algorithm over a large-scale collec-
tion of hateful posts from the web. In this section,
we discuss the potential of our approach in finding
good quality topics, and we provide the lessons that
we learned, limitations, and future work.

5.1 Common sense based expansions
Existing research work suggests that by extending
the representation of documents might be possible
to identify high-quality topic structures (Liu et al.,
2018). Inspired by this line of work, we generate
common sense based expansions and add them to
the documents’ representation.

Our findings show that common sense based ex-
pansions generated from the textual content of the
post can slightly increase the topics’ coherence.
This is a relevant finding, especially because we
trained the model in a non-traditional dataset. The
textual post from 4chan usually contains terms and
phrases (e.g., slurs) that are not present in general
common sense knowledge bases (Hine et al., 2017),
making it challenging to retrieve relevant informa-
tion, especially when the textual content is short.

While we see the potential of using a common
sense knowledge base to retrieve relevant informa-
tion, we also notice that our approach is not suitable
for all the cases. For example, for the phrase “An-
other white racist male trump voter” we obtained

the following relations: “Voter is like person. Per-
son wants racist. Person is like male”. While we
can expect a relation between “person” and “racist”,
we do not believe that they are connected by de-
sire (“wants”). We found several similar examples
while inspecting our results (e.g., “gay is the oppo-
site of closet“). While ConceptNet contains a large
number of concepts and relations, further studies
should identify and remove the connections that
are not correct.

We also observe that a high volume of our sen-
tences contains the RelatedTo connection which
our template convert it into {a} is like {b} where
{a} and {b} are two relevant terms. Table 1 shows
several examples. Indeed, one of the expansions
only contains this type of relation: “Refuse is like
disagreement. Disagreement is like fight. Fight is
like wars”. Unfortunately, this expansion is vague
and does not provide more information about how
the terms {“refuse”, “disagreement”, “fight”, and
“wars”} are related. We believe that by using both
symmetric and asymmetric relations that provide a
deeper level of description, such as DistinctFrom,
Causes, AtLocation, the performance of our tech-
nique might improve.



5.2 Image captioning

Image captioning is a challenging task even today
(Mokady et al., 2021) because their performance is
conditioned on the datasets on which the models
are trained (Zeng et al., 2022). For training ClipCap
(Mokady et al., 2021), the authors used separately
three different datasets: the COCO-captions (Com-
mon Objects in Context) (Lin et al., 2014), nocaps
(Agrawal et al., 2019), and Conceptual Captions
(Sharma et al., 2018). In this project, we chose the
model trained on the Conceptual Captions (Sharma
et al., 2018) dataset because it showed better quali-
tative results when we manually compared the cap-
tions generated for a random sample of our dataset.

We find some evidence that indicates that our
chosen image captioning model can generate satis-
factory captions for our selected dataset (see Figure
2 (a) ). However, it was not for all the cases. Some
captions do not adequately represent the content
of the images (see Figure 2 (b) ) or contain bias
(see Figure 2 (d)). Prior work has already reported
that captioning image models are biased based on
the training data (Zeng et al., 2022). We also no-
tice that this model needs external knowledge to
generate captions more adequate to the context of
the dataset. For instance, the model describes the
antisemitic “Happy Merchant” meme (Zannettou
et al., 2020) as “a cartoon of a bearded man playing
a trumpet” (see Figure 2 (b)). This inadequate rep-
resentation might impact the performance of our al-
gorithm, mainly because these kinds of memes are
prevalent in 4chan (Zannettou et al., 2018, 2020).
We believe that this can explain why the coherence
of the resulting topics decreases after adding to the
document representation image related data.

5.3 Self-evaluation

In this project, we learned several lessons and dealt
with several challenges. First, the initial idea was
to categorize posts’ textual content and image con-
tent separately. However, we discovered that while
CLIP can encode textual and image content, these
vector representations are significantly different.
As a result, during our first attempts, the result-
ing topics included only textual elements or image
elements, not both. That is why we decided to cre-
ate a document representation that considers both
modalities simultaneously. After concatenating the
textual and image vector, we mitigated this prob-
lem.

We also learned that it is very computationally

expensive to identify the relations between thou-
sands of terms. Therefore, we implemented several
strategies to improve the performance of the results,
and all our experiments were performed in GPU
clusters from the Max Planck Institute. Still, it was
necessary to execute our algorithm for 10 hours
and 32 minutes to identify the relevant topics from
100,000 posts.

Furthermore, while we tried to improve the com-
mon sense based expansions by (1) selecting only
those with high similarity with the original doc-
ument and (2) selecting a higher number of rele-
vant terms from sentences, we had to discard those
alternatives given that they largely increased the
algorithm execution time.

We also identified that the selected dataset added
additional complexity to our research project be-
cause common popular terms and phrases (e.g.,
slurs) were absent in the chosen knowledge base.
However, this is not bad because we also identi-
fied room for improvement in state-of-the-art. For
example, we believe that we could extend current
common sense knowledge bases or create a new
one to support hateful content specifically.

5.4 Limitations and future work

As in any study, this research has limitations that
need to be considered. First, we only retrieve com-
mon sense knowledge from ConceptNet (Speer
et al., 2017). We plan to extend this work by consid-
ering other common sense knowledge bases, such
as Atomic (Sap et al., 2019). We expect that by con-
sidering other sources of knowledge, we can obtain
more adequate common sense based expansions,
especially for non-traditional datasets on which nat-
ural language processing techniques are not trained.

We also plan to compare our algorithm with
other traditional topic modeling techniques such as
LDA (Blei et al., 2003), or NMF (Févotte and Idier,
2011). We intend to compare these algorithms over
different datasets using several automatic coher-
ence metrics. We believe that conducting users
studies will be helpful to identify the quality of the
resulting topics, mainly because current automatic
coherence metrics do not consider the connection
between the most relevant images of topics.

We plan to optimize our current algorithm to
decrease the processing time. That will allow iden-
tifying topics over larger datasets. We also intend
to evaluate the performance of our approach with
different parameter settings (e.g., by changing the



number of relevant terms retrieved from a docu-
ment, considering different lengths of the path be-
tween relevant terms in the knowledge base, mea-
suring the similarity between the common sense
based expansions and the original documents).

Our results suggest that captioning image models
inject noise and decrease the performance of our
algorithm. However, it is still necessary to identify
the relevant elements of images. To mitigate this
problem, we plan to identify the text of the images
by using OCR (Memon et al., 2020) and identify
the elements of images by using an object detection
system (Gu et al., 2019).

6 Conclusions

We introduced a new topic modeling algorithm for
multimodal data leveraging common sense knowl-
edge to identify coherent topics. To the best of
our knowledge, no attempt to incorporate common
sense in multimodal topic modeling algorithms has
been proposed. We train and evaluate our model
over a large-scale collection of 4chan posts. Our re-
sults show that injecting common-sense knowledge
into a topic modeling algorithm might increase top-
ics’ coherence, increase the silhouette score, and
reduce the percentage of non-categorized data. Our
results also show that extending the representation
of documents can vastly increase the number of
topics. These results hint at the potential of us-
ing external knowledge to increase the quality of
topics.
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