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Abstract

The task of commonsense knowledge genera-
tion is largely limited to the language domain,
with models such as COMET (for explicit
knowledge) and GPT-3 (for implicit knowl-
edge). Moreover, VisualCOMET, a common-
sense generation model that utilizes the visual
context, is limited to three people-centric rela-
tions. Since commonsense generation on entire
scenes, or parts of a scene, can be helpful in sev-
eral downstream multimodal tasks, including
visual question answering, story-telling, and
topic modeling, we propose a general-purpose
visual commonsense generation model, Visual-
COMET+, by extending VisualCOMET with
four diverse inference relations. Using the clue-
rationale pairs from a visual abductive reason-
ing dataset, we successfully train our common-
sense generation model by creating ground-
truth structured commonsense triplets. Then,
we show that we can get coherent and more
diverse topics by incorporating generated com-
monsense inferences and visual features into
a novel multimodal topic modeling algorithm,
Multimodal CTM.

1 Introduction

Visual commonsense generation is a recent area of
research that is fundamental to many real-world
tasks. Visual reasoning in humans is driven not
only by the visual cues we observe but also by imag-
ining the context accompanying those cues and our
commonsense knowledge and reasoning abilities.
For example, given the images in Figure 1(a) and
the question: “What is common among all these im-
ages?”, we can use our commonsense knowledge
to deduce that these are all images of fun activities
in a tourist destination. Therefore these images
belong to the common topic of “tourist attractions”.
Incorporating such commonsense knowledge into
machine learning models, as shown in Figure 1(b),
is essential for developing models that can not only
recognize visual cues but also reason about them.

Figure 1: An example of Topic Modeling that requires
commonsense reasoning.

Recent work in commonsense generation is pri-
marily focused on the natural language domain.
Large-scale knowledge bases such as ATOMIC
(Sap et al., 2019) and ConceptNet (Speer et al.,
2017a) contain commonsense knowledge as a
graph of nodes representing objects or entities con-
nected by relation edges. The popularity of the
Transformer model has further led to the develop-
ment of COMET (Hwang et al., 2021), a common-
sense transformer model trained on such knowl-
edge graphs. Furthermore, recent advancements
with large-scale models such as GPT-3 (Brown
et al., 2020) have brought commonsense genera-
tion capabilities but are largely inaccessible due
to their size and cost. In the visual domain, Visu-
alCOMET (Park et al., 2020) introduced a model
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that attempts to predict what happens before, after,
and intent of a person in a movie frame. This is
quite limited, as the model does not reason about
the overall scene, and therefore cannot be applied
to many downstream tasks like VQA.

Contributions: Motivated by previous limitations
of natural language processing techniques in the
visual context, our work makes the following con-
tributions:

• VisualCOMET+: A model that can gen-
erate commonsense inferences on provided
image + textual cues. We extend the exist-
ing VisualCOMET model by introducing di-
verse relations that go beyond people-centric
knowledge, such as HasProperty, HasContext,
indicates, and AtLocation. We hypothesize
that this model will be useful for multimodal
downstream applications such as topic model-
ing, story-telling, and VQA, and dialog.

• Multimodal CTM: We introduce a multi-
modal topic modeling algorithm that takes as
input texts, images, and inferences from Visu-
alCOMET+. We show that incorporating im-
age features and VisualCOMET+ inferences
allows us to obtain a better representation of
the input documents and identify coherent and
more diverse topics. To the best of our knowl-
edge, this is the first multimodal neural topic
modeling algorithm.

2 Related Work

This section provides background information on
commonsense generation, topic modeling algo-
rithms, and the incorporation of commonsense
knowledge into topic models.

2.1 Commonsense generation
Reasoning about events and entities has long been
of interest to AI research. In the field of NLP, struc-
tured large-scale knowledge bases (KBs) like Con-
ceptNet (Speer et al., 2017a) and ATOMIC (Sap
et al., 2019) are widely used to provide additional
commonsense knowledge to models. ConceptNet
contains 3.4 million assertions focusing on con-
cepts and their taxonomic and lexical relations (e.g.,
RelatedTo, Synonym, IsA), and physical common-
sense knowledge (e.g., MadeOf ). ATOMIC, on
the other hand, contains 880,000 triplets focusing
on event-centric social commonsense about causes,
effects.

However, incorporating knowledge directly from
KBs suffers from two limitations: lack of cover-
age and consideration for context. A common-
sense Transformer, COMET (Hwang et al., 2021),
attempts to alleviate these issues by fine-tuning
pre-trained language models on KBs. COMET
can generate contextualized commonsense infer-
ences dynamically and generalize to unseen inputs.
COMET has been successfully used for generat-
ing knowledge in language tasks (Majumder et al.,
2020; Tian et al., 2021; Chakrabarty et al., 2022;
Shwartz et al., 2020).

Several variants of COMET have subsequently
been released. The most relevant to our work is
VisualCOMET (Park et al., 2020), which gener-
ates temporal inferences for causes and effects
of the events in an image. We believe that the
event-specific nature of this model makes it less
applicable to datasets that require knowledge about
entities rather than events. Another recent work,
KM-BART (Xing et al., 2021), proposes novel pre-
training regimes for visual commonsense genera-
tion, but is also limited to event-specific knowledge.
In this work, we propose an extension to Visual-
COMET, VisualCOMET+, that supports additional
relations to reason beyond people and events, and
obtain more general-purpose, diverse inferences.

2.2 Topic modeling

The creation of vast amounts of data has led to
the development of various techniques designed to
summarize and understand textual data (Peter et al.,
2015). A well-known method is topic modeling,
a robust approach for extracting core themes or
topics from large collections of documents. When
a topic modeling is applied to a corpus of doc-
uments (e.g., a collection of news articles), the
output will include a list of topics (e.g., “politics”,
“economics”, “sports”). Usually, each topic is rep-
resented by a collection of terms that make sense
together (e.g., {“tropical”, “storm”, “hurricane”,
“cyclone”, “weather”, and “rain”}) (Zhao et al.,
2021).

From a practical standpoint, topic modeling can
be viewed as an extreme form of multi-document
summarization, where it can be used to understand
the underlying general themes presented in a large
collection of documents (Blei et al., 2010; Boyd-
Graber et al., 2017). However, studies have shown
that the output of topic models do not always accu-
rately represent the characteristics of the analyzed
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document collections (El-Assady et al., 2019) or
make sense to the end users (Hoque and Carenini,
2015). Part of this problem is because most topic
modeling approaches focus on the co-occurrence
of terms as the primary signal to detect the topi-
cal structure among them (Harrando and Troncy,
2021). As a result, these methods do not capture
semantic and pragmatic relations between terms
in the corpus (Harrando and Troncy, 2021; Song
et al., 2020; Hong et al., 2020).

Prior work has suggested using external knowl-
edge to overcome this drawback (Hong et al., 2020),
and commonsense knowledge (i.e., relations be-
tween concepts) is one promising alternative (Har-
rando and Troncy, 2021). In this work, we explore
how commonsense knowledge could improve the
performance of a popular and well-known neural
topic model.

2.3 Topic Modeling and Commonsense

The developments of deep neural networks has led
to the development of several neural topic models
(NTMs) to address probabilistic topic model lim-
itations in terms of performance, efficiency, and
usability (Zhao et al., 2021). One of the most
popular neural topic modeling algorithms is Con-
textualized Topic Models (CTM) (Bianchi et al.,
2021a,b), which uses external word representation
(e.g., SBERT (Reimers and Gurevych, 2019)) to
get more coherent topic than previous popular ap-
proaches (e.g., ProdLDA (Srivastava and Sutton,
2017), and LDA (Blei et al., 2003)).

Topic modeling algorithms such as
CTM (Bianchi et al., 2021a) show that adding
contextual information to neural topic models
significantly improves the resulting topics’ co-
herence. Recent work has explored expanding
these contextualized representations by injecting
external knowledge, such as commonsense
knowledge (see (Bosselut et al., 2019)), to improve
their performance. Injecting commonsense
knowledge into topic modeling algorithms might
help to obtain a more semantically meaningful
representation of the input document (Shah et al.,
2021) and, therefore, topics more aligned with
commonsense relations.

Commonsense knowledge has already been used
for different tasks such as question answering
(Bauer et al., 2018), sentiment analysis (Ghosal
et al., 2020; Ravi et al., 2021), and dialogue (Young
et al., 2018). However, only a few attempts to in-

corporate commonsense knowledge into topic mod-
eling algorithms exist (Rajagopal et al., 2013; Har-
rando and Troncy, 2021). One of these approaches
is the Commonsense Topic Model (CSTM) (Har-
rando and Troncy, 2021). This recently proposed
topic modeling technique augments clustering with
knowledge extracted from ConceptNet (Speer et al.,
2017b) to find more interpretable topics by humans.
After evaluating this approach on several datasets,
the authors claim their proposal generally finds
more coherent topics than the traditional LDA.

Considering these promising results, in this
project, we explore if we find more coherent and di-
verse topics by injecting contextual commonsense
inferences based on the image, into a neural topic
modeling algorithm. To the best of our knowledge,
we are the first to inject commonsense knowledge
in a multimodal setting for a neural topic modeling
algorithm.

3 Method

Figure 2 shows the architectural overview of our
proposed approach. Given an image, we first gener-
ate commonsense inferences relevant to the image
using VisualCOMET+. We feed these inferences,
along with text and image features of documents,
into our proposed Multimodal CTM. We expect to
find coherent and more diverse topics. We describe
VisualCOMET+ in Section 3.1, how we generate
visual commonsense inferences in Section 3.1.1,
and our multimodal topic modeling algorithm (Mul-
timodal CTM) in Section 3.2.

3.1 VisualCOMET+

The first part of our pipeline is generating visual
commonsense inferences. Our model architecture
is based on VisualCOMET (Park et al., 2020).
Given an image containing an event (e.g., a per-
son drowning), VisualCOMET can generate infer-
ences about what happened before (e.g., the ship
sank) and after (e.g., he called for help). Visual-
COMET has been trained on 60,000 images and
three event relations (before, after, and intent). Our
goal is to extend VisualCOMET and support new
relations, including HasProperty (properties of an
object such as what it is used for, where it is found,
etc.); AtLocation (where an object/event is usually
found); HasContext (what contexts are similar to
the given input); and Indicates (what does this im-
ply).

Our architecture is an adaptation of Visual-
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Figure 2: Overall architecture

Figure 3: VisualCOMET+: Vision-Language Trans-
former for our approach. We feed the image and ROI
tokens, a head entity with the ROI ID and text cue, and
a relation. The transformer decoder then generates an
inference.

COMET’s transformer architecture based on BART
(Lewis et al., 2020) and is shown in Figure 3. Our
input sequence is composed of the visual context
(regions of interest (ROIs)), the ROI ID token, the
text cue language tokens, and the relation we are
interested in. We expect our model to generate rel-
evant inferences to the object and relation provided
in the input sequence. We modify the text-to-image
grounding mechanism in VisualCOMET+ with an
additional ROI ID token, a number that is appended
to the start of each text cue, to signify to the model
which ROI visual feature is being referred to.

During training, we utilize the usual seq2seq
negative log-likelihood loss, as specified in Visual-
COMET (Park et al., 2020). Note that we do not
train with the EP Loss proposed in VisualCOMET
because it is out of the scope of the course project.

We train our model for 5 epochs, starting from the
VisualCOMET checkpoint.

3.1.1 Commonsense Knowledge Acquisition

To train VisualCOMET+, we extract commonsense
triplets from Sherlock (Hessel et al., 2022), a visual
abductive reasoning dataset. This dataset is based
on images from VCR and VisualGenome, but we
only sample from the part of the dataset that uses
VCR images, as the original VisualCOMET dataset
is also based on VCR images.

In this dataset, an image is annotated with multi-
ple descriptive clues describing the most important
regions of the image. Each clue is denoted by a
bounding box and a textual description of that re-
gion of interest. In addition, each clue is annotated
with a rationale which explains the clue. Figure 4
shows an example of a clue-rationale pair, and its
associated bounding box, on the left. This dataset is
an ideal candidate to extract commonsense triples
for our model because the clue-rationale pairs are
true to the image context.

We construct triplets from clue-rationale pairs
by mapping to ConceptNet (Speer et al., 2017b), a
commonsense knowledge base. We match the clue
description and rationale with ConceptNet nodes
using text processing and sequence matching meth-
ods for a given clue-rationale pair. Then, we find
the shortest path from clue keywords → rationale
keywords using Yen’s shortest path finding algo-
rithm1. See Figure 4 for an example.

In order to map ConceptNet relations to ours,
we aggregate certain ConceptNet relations that best
fit into each of our proposed relations, HasProp-
erty, HasContext and AtLocation. A list of all
the mappings is provided in the appendix Sec-
tion 9.1. For example, the ConceptNet relations
<usedfor>, <partof> and <hasproperty> are
mapped to HasProperty, and a text form of the
ConceptNet relation is prepended to the infer-
ence. Therefore, the ConceptNet triplet [saddle,
<usedfor>, riding] becomes [saddle, HasProperty,
used for riding] in our training data. In addition,
we directly connect the clue to rationale with a new
relation indicates. This is a new generic relation
that provides an explanation for the given clue.

In this way, we construct 50K triplets from Sher-
lock and use 80% for training and 20% for testing.

1We use the shortest_simple_paths method from
NetworkX (https://networkx.org)
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Figure 4: Building commonsense triplets using the clue and rationale from Sherlock (Hessel et al., 2022).

3.2 Multimodal CTM

Having obtained commonsense inferences, we in-
corporate them into Multimodal CTM to find co-
herent and more diverse topics than current neural
topic modeling approaches. We propose a new
topic modeling algorithm because, to the best of
our knowledge, there is no neural topic modeling
algorithm that takes as input visual and textual fea-
tures. Incorporating features from multiple modali-
ties, as well as commonsense inferences, provides
the model with an improved context to model top-
ics.

We develop Multimodal CTM by extending
the neural variational topic model CTM (Bianchi
et al., 2021b) (see Figure 5 (a)). This variational
autoencoder model takes as input a pre-trained
representation of text documents (e.g., by using
SBERT (Reimers and Gurevych, 2019)) to get a
rich syntactic and semantic representation between
tokens (Zhao et al., 2021). The model adjusts its la-
tent space by reconstructing the bag-of-words from
the documents. The topics (i.e., a set of keywords)
are extracted from its latent space.

We extend this well-known topic modeling algo-
rithm by allowing it to take as an input the image
and the text of the document. For each document,
we also add as an input the relevant inferences (in
textual format) from VisualCOMET+ (see Figure
5(b)). The commonsense inferences from Visual-
COMET+ are concatenated with the initial textual
content of the posts. We embed the visual and tex-
tual features using OpenAI’s CLIP model (Radford
et al., 2021). This allows us to obtain a common
representation between the two modalities.

(a)

(b)

Figure 5: (a) High-level scheme of the architecture for
CTM described in (Bianchi et al., 2021b) (b) Architec-
ture of our proposed Multimodal CTM.

5



Figure 6: VIST dataset. Example descriptions of images
in isolation (DII) and stories of images in sequence
(SIS).

3.2.1 Dataset for Topic Modeling - VIST
We demonstrate the utility of our proposed methods
through multiple evaluation metrics on the Visual
Story-Telling dataset (VIST)2. This dataset con-
tains 81,743 unique photos in 20,211 sequences,
aligned to descriptive caption (DII) and story lan-
guage (SIS) (see Figure 6). We use the DIIs as
text cues to VisualCOMET+ for generating com-
monsense inferences, and use the SIS as the text
document in Multimodal CTM. We choose this
dataset because (1) the images in this dataset are
general and diverse, and (2) the SIS text is not sim-
ply describing the image, but rather is an extension
to the image, making this analogous to social media
content, that topic modeling is useful for.

3.2.2 Generating Commonsense Inferences
for VIST

We sample 17,000 instances of unique images, DII
captions, and story triplets from VIST. We feed
into VisualCOMET+ the image feature of the full
image and the image’s caption as the textual cue,
in order to generate inferences for the four new
relations that we added: HasProperty, AtLocation,
HasContext, and indicates. We obtain one infer-
ence from each and join them into a single sentence.
An example of this is provided in Figure 7.

4 Evaluation

We evaluate the quality of commonsense infer-
ences generated from VisualCOMET+ by using

2https://visionandlanguage.net/VIST/

metrics that indicates N-gram overlap. This is
the same procedure used for evaluating Visual-
COMET (Park et al., 2020). We mainly focus on
the BLUE-2 score (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014). For BLEU-2,
we measure the 2-gram overlap between the gen-
erated inferences and ground truth triplets created
from clue-rationale pairs, as described in Section
3.1.1.

By injecting commonsense into the topic mod-
eling algorithm, we expect to find coherent and
more diverse topics. Thus, we will evaluate topic
models on five metrics: three for topic coherence
(NPMI (Lau et al., 2014); Cv (Röder et al., 2015a),
and WECO (Ding et al., 2018)) and two to quan-
tify the diversity of the resulting topics (TD (Dieng
et al., 2020); and I-RBO (Bianchi et al., 2021a)).
See Section 9.3 for a detailed description of these
metrics.

5 Results

We first discuss results on VisualCOMET+ using
the triplets from the Sherlock dataset. Then, we dis-
cuss the topic modeling results after injecting com-
monsense inferences into our Multimodal CTM.

5.1 VisualCOMET+ results

On the test set of triplets from the Sherlock dataset,
we obtain a BLEU-2 score of 0.306, which exceeds
the BLEU-2 score of 0.135 reported for Visual-
COMET (Park et al., 2020). Likewise, we obtain
a score of 0.175 on the METEOR metric, whereas
VisualCOMET achieves 0.115. However, it is un-
reasonable to compare scores directly, because we
use the new relations to conduct our experiments,
and, triplets from Sherlock are completely differ-
ent from triplets from the VisualCOMET dataset.
However, the scores indicate that the model has
learned to generate inferences on the new relations,
without any significant drop in performance.

We show qualitative examples in the appendix,
in Section 9.2. We see that in Figure 10 the model
is able to generate commonsense inferences for all
of the seven supported relations. We also see that
the model is able to reason beyond the image and
the text cue, with phrases such as “messy person”,
“used for dishes”, “kitchen”, and “left the food”. In
Figure 11, we see that providing different ROIs and
text cues for the same image can lead to diverse
generations.
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Figure 7: Example of commonsense inferences for an (image, DII) pair of VIST. We feed VisualCOMET+ with the
image features of the full image and its DII as textual cue. We obtain inferences using four relations: HasProperty,
AtLocation, HasContext, and indicates to use in Multimodal CTM.

Model Relations Test Size BLEU-2 METEOR

VisualCOMET before, after, intent 145k 0.135 0.115
VisualCOMET+ HasProperty, AtLocation, HasContext, indicates 10k 0.306 0.175

Table 1: Evaluation of VisualCOMET+ on the test set generated using Sherlock. VisualCOMET (Park et al., 2020)
scores are provided as reference. While we cannot compare BLEU-2 and METEOR scores directly, because our
model uses different relations and a smaller test set, we can say that the model is learning to generate inferences for
the new relations.

Documents embeddings Coherence Diversity

NPMI Cv WECO TD IRBO

Text -0.04 0.38 0.21 0.62 0.98
Text-Image -0.04 0.38 0.22 0.67 0.99
Text-Inferences -0.03 0.39 0.22 0.62 0.98
Text-Image-Inferences (Multimodal CTM) -0.03 0.39 0.22 0.68 0.99

Table 2: Comparison of topics’ coherence and topics’ diversity between document representations. Each result
averaged over 11 runs. We compute all the metrics for 25 topics. Best results are bold.

5.2 Topic modeling results

Table 2 shows the effects of using different input
representations in our topic modeling algorithm.
We compute topic coherence and diversity metrics
for 25, 50, and 75 topics (see Section 9.4 for more
details). We average results for each metric over 11
runs of each model.

Our results suggest that by incorporating im-
age and VisualCOMET+ inferences, we can obtain
more diverse topics with similar or slightly higher
coherence. We hypothesize that the scores ob-
tained for topics’ coherence, predominantly based
on word occurrences in the corpus, are justified by
the fact that the top words identified by Multimodal
CTM do not explicitly co-occur more in the corpus
but are rather semantically related through the ex-
ternal knowledge. A qualitative analysis of these
results (e.g., by using word intrusion tasks (Chang
et al., 2009)) can provide more insights into the
differences between the topics found using various
documents’ representations. We leave this analysis

for future work.

As an example, Figure 8 shows the most rele-
vant documents associated with one topic identified
by Multimodal CTM. The most relevant keywords
associated with this topic are related to weddings
(e.g., “bride”, “husband”, and “love”). We show
the top 7 (image, story) pairs from VIST most re-
lated to this topic. For each document, we display
the image, the story, and the probability of this doc-
ument belonging to this topic. All these documents
seem to be highly related. These results highlight
the usefulness of our algorithm on a multimodal
dataset.

We also used an interactive topic modeling vi-
sualization tool to get a better interpretation of
our results. LDAvis (Sievert and Shirley, 2014),
projects topics into a two-dimensional space. Cir-
cles represent topics, and the similarity between
topics determines their positions. The circle size
indicates a topic’s prevalence in the corpus. Figure
9 shows a visualization of a topic model. The most
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Figure 8: Example of the most relevant documents to a topic in Multimodal CTM.

relevant keywords of the currently selected topic
and its similarity with others allow us to interpret
this theme as weddings.

Figure 9: Visualization of topics from Multimodal CTM.
On the left, a global view of topics is provided. On the
right, the most relevant keywords from the selected topic
appear.

6 Discussion & Limitations

VisualCOMET+ does a reasonable job of generat-
ing meaningful inferences given image and textual
cues, as shown in qualitative examples. With VIST,
we attempted to generate inferences on a com-
pletely different dataset, since both Sherlock and
VisualCOMET datasets are based on VCR images,
whereas VIST is not. Even then, the model was
able to generate good quality inferences which en-
hance the topic model. That said, VisualCOMET+
suffers from a few drawbacks. First, inference di-
versity is limited, where the inferences generated
for different relations are very similar. Second, in-
ferences may contain information that is incorrect
with respect to the image. Improving image fea-
tures and using more training may alleviate these
issues.

Multimodal CTM is the first neural topic model
that takes into account commonsense inferences
and visual features to identify the main themes of

a corpus. Our results show that images and Visual-
COMET+ inferences can result in more coherence
and diverse topics. In future work, we would like
to analyze if the resulting topics match the cor-
pus and if the granularity of those is adequate for
real-world applications. Experiments in other mul-
timodal datasets can also provide insights in terms
of the performance of our algorithm.

While the performance of MultiModal CTM is
adequate, there are venues for improving its perfor-
mance. For example, in the current version of the
algorithm, the decoder of the variational autoen-
coder only reconstructs the bag-of-words of the
document’s textual content. We hypothesize that
by adding an additional task to the decoder, such as
reconstructing the image features of the documents,
its performance can be boosted.

7 Takeaways

1. We discovered that extracting commonsense
knowledge from existing VL datasets is a
promising and less expensive alternative to
acquiring human annotations.

2. Extending VisualCOMET helped us in under-
standing and implementing a basic grounding
mechanism to tie an image region to a corre-
sponding textual cue.

3. We gained a deeper understanding of neural
topic models and how to adapt them to a mul-
timodal setting.

4. We experimented with different metrics to
evaluate the quality of topics, and recognized
some limitations of automatic metrics (e.g.,
measuring topic diversity only on the top ten
keywords of topics might not be very insight-
ful).

5. We learned to improve our algorithms in terms
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of space and time complexity. Currently, we
can evaluate topic models five times faster
than in the previous two weeks.

6. We learned how to divide a larger idea into
non-overlapping components, which helped
us deliver results on time.

8 Conclusions

We introduced VisualCOMET+, Vision Language
transformer that can generate commonsense infer-
ences on not only people-centric relations (e.g.,
what a person did “before”) but more diverse rela-
tions that encompass the properties of objects (e.g.,
“HasProperty”) and provide more context and ra-
tionale (e.g., “Indicates”). We have also presented
Multimodal CTM, a new multimodal topic model-
ing algorithm that incorporates text, images, and
commonsense inferences from VisualCOMET+, to
find coherent and diverse topics.
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9 Appendix

9.1 ConceptNet relations to VisualCOMET+
relations

We map ConceptNet relations to our new relations,
HasProperty, HasContext and AtLocation in the
following manner:

1. <usedfor>, <hasproperty>, <capableof>,
<partof>, <madeof>, <hasa> are mapped
to HasProperty.

2. <hascontext>, <similarto>,
<etymologicallyrelatedto>, <mannerof>
are mapped to HasContext.

3. <atlocation> is mapped to AtLocation.

4. All other relations from ConceptNet are ig-
nored.

9.2 Commonsense Generation Examples
In Figure 10 and Figure 11, we show qualitative
examples of commonsense generation on images
from the Sherlock dataset.

9.3 Topic Modeling Evaluation
We evaluate the quality of topic models based on
topic coherence (topic keywords must shame some
level of semantic relatedness) and topic segregation,
which measures the lexical and semantic overlap
between topics. Note that a higher value indicates a
better performance in all of the metrics mentioned
below.

Normalized Pointwise Mutual Information
(NPMI) (Lau et al., 2014) is one of the most well-
known automatic coherence metric. It measures
how much more likely the most representative
terms of a topic co-occur than if they were in-
dependent. NPMI returns a high score when the
top N words that describe a topic, summed over
all pairs wi and wj , have high joint probability
P (wj , wi) compared to their marginal probabil-
ity (Hoyle et al., 2021). The range of NPMI is
between [-1,1], whereas a higher value indicates a

more coherent topic. Usually, NPMI is calculated
by using a sliding window of 10 words to identify
co-occurrences.

Cv (Röder et al., 2015b) uses a variation of
NPMI to calculate the coherence over a sliding win-
dow with size 110. It calculates the co-occurrence
of a word of a given topic against all words of the
same topic. It ranges between [0,1], where a higher
value suggests more coherent topics.

External word embeddings topic coherence
(WECO) (Ding et al., 2018) provides an additional
measure of how similar the words in a topic are.
It is based on word embeddings (Mikolov et al.,
2013). First, it is computed as the average pairwise
cosine similarity of the word embeddings of the
top 10 words in a topic. Then, the overall average
of those values for all the topics is reported.

Topic diversity (TD) (Dieng et al., 2020) is
computed as the percentage of unique words in the
top 25 words of all topics. Its range is between
[0,1]. A value near zero suggests redundant top-
ics, while a value near one suggests more different
topics.

Inversed Rank-Biased Overlap (I-
RBO) (Bianchi et al., 2021a) evaluates how
diverse the topics generated by a single model are.
When comparing topics, the rank of each term
matters (Terragni et al., 2021); it is not the same if
topics share words at high ranks as if they do at
low ranks. I-RBO is the reciprocal of the standard
RBO (Webber et al., 2010), and it is computed by
considering the top 10 words of topics. In this
metric, two topics that share some of the keywords,
although at different rankings, are penalized less
than two topics that share the same keywords at
the highest ranks. It ranges between [0,1].

9.4 Additional topic modeling results

We also run our experiments considering different
numbers of topics (i.e., 50, and 75). Table 3 and
Table 4 show the result of different document rep-
resentations into our multimodal topic modeling
algorithm with 50 and 75 topics, respectively.
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Figure 10: Example of commonsense inference generation on all seven relations that VisualCOMET+ supports. The
three older VisualCOMET relations are in green, and the four new relations are in yellow. We generate reasonable
inferences given the text cue and the image, but also show that our model is not perfect, and may produce repetitive
(less diverse) inferences across relations.

Figure 11: Example of commonsense inference generation on the same image, but with different ROI and text cues.
We show that the model adapts well to varying cues.
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Documents embeddings Coherence Diversity

NPMI Cv WECO TD IRBO

Text -0.03 0.38 0.21 0.31 0.93
Text-Image -0.04 0.38 0.22 0.41 0.97
Text- Inferences -0.04 0.38 0.22 0.40 0.97
Text-Image-Inferences -0.03 0.38 0.21 0.35 0.95

Table 3: Comparison of topics’ coherence and topics’ diversity between document representations. Each result
averaged over 11 runs. We compute all the metrics for 50 topics

Documents embeddings Coherence Diversity

NPMI Cv WECO TD IRBO

Text -0.04 0.38 0.20 0.22 0.93
Text-Image -0.03 0.37 0.21 0.22 0.92
Text- Inferences -0.04 0.38 0.20 0.19 0.91
Text-Image-Inferences -0.03 0.37 0.21 0.24 0.93

Table 4: Comparison of topics’ coherence and topics’ diversity between document representations. Each result
averaged over 11 runs. We compute all the metrics for 75 topics
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