
Contextualized Topic Models with Commonsense Knowledge

Felipe González-Pizarro
Department of Computer Science
University of British Columbia
felipegp@cs.ubc.ca

Raymond Li
Department of Computer Science
University of British Columbia
raymondl@cs.ubc.ca

1 Introduction

The vast amount of data has led to the develop-
ment of various techniques designed to summarize
and understand textual data (Peter et al., 2015). A
well-known method is topic modeling, a robust ap-
proach for extracting core themes or topics from
a large collection of documents. When topic mod-
eling is applied to a document corpus (e.g., a col-
lection of news articles), the output will include
a list of topics (e.g., topics related to “politics”,
“economics”, “sports”). Usually, each topic is rep-
resented by a collection of terms that make sense
together (e.g., {“tropical”, “storm”, “hurricane”,
“cyclone”, “weather”, and “rain”}) (Zhao et al.,
2021).

From a practical standpoint, topic modeling can
be viewed as an extreme form of multi-document
summarization, where it can be used to understand
the underlying general themes presented in a large
collection of documents (Blei et al., 2010; Boyd-
Graber et al., 2017). However, studies have shown
that the output of topic models do not always accu-
rately represent the characteristics of the analyzed
document collections (El-Assady et al., 2019) or
make sense to the end users (Hoque and Carenini,
2015). Part of this problem is because most topic
modeling approaches focus on the co-occurrence
of terms as the primary signal to detect the topi-
cal structure among them (Harrando and Troncy,
2021). As a result, these methods do not capture
semantic and pragmatic relations between terms
in the corpus (Harrando and Troncy, 2021; Song
et al., 2020; Hong et al., 2020).

Prior work has suggested using external knowl-
edge to overcome this drawback (Hong et al., 2020),
and commonsense knowledge (i.e., relations be-
tween concepts) is one promising alternative (Har-
rando and Troncy, 2021). In this project, we test
this hypothesis by performing top modeling with
commonsense knowledge using two techniques. In

the first technique, we extend Contextualized Topic
Model (CTM) (Bianchi et al., 2021a), a state-of-
the-art topic model that implements black-box vari-
ational inference, to include commonsense-aware
embeddings as input (§3.2). In the second tech-
nique, we employ a clustering-based approach us-
ing the commonsense-aware embeddings of ex-
tracted concepts in the corpus (§3.3). In §4, we
perform extensive experiments on three datasets
and discuss the trade-off between the two tech-
niques.

Our contributions can be summarized in three
folds. First, we systematically experimented with
commonsense embeddings (i.e., COMET (Bosselut
et al., 2019) and ConceptNet NumberBatch (Speer
et al., 2017)) as a viable solution to incorporate
commonsense knowledge into CTM. Secondly, we
explored clustering as a potential alternative to
LDA-inspired techniques (e.g., Neural Topic Mod-
els). Finally, from our experiment results, we dis-
cuss the trade-off between the two techniques and
provide motivations to incorporate corpus-level se-
mantic relationships between words into neural
topic models.

2 Related Work - Topic models

During the last few years, several topic modeling
techniques have been proposed. The most influen-
tial and popular topic modeling algorithm is Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). This
Bayesian probabilistic generative model summa-
rizes a collection of documents as a set of latent
topics. These latent topics are represented by dis-
tribution over words, and a mixture of these topics
represents the documents.

Over the years, LDA has been used in several do-
mains (e.g., social media analysis (González et al.,
2019; Jang et al., 2021)), showing the technique’s
usefulness. However, it has several limitations.
First, it fails to get interpretable topics in large
heavy-tailed vocabularies (Dieng et al., 2020). To



mitigate this problem, practitioners could remove
the most and least frequent words from the vocabu-
lary. However, by doing so, the scope of the topics
might be restricted (Dieng et al., 2020). Secondly,
their inference process is challenging to scale effi-
ciently on large text collections or extend in parallel
computing facilities (Zhao et al., 2021).

With the recent developments of deep neural
networks, several neural topic models (NTMs)
have also been proposed to address probabilistic
topic model limitations in terms of performance,
efficiency, and usability (Zhao et al., 2021). For
instance, Srivastava and Sutton (2017) proposed
one of the first NTMs: Product-of-Experts LDA
(ProdLDA), a topic modeling algorithm based on a
variational autoencoder (Blei et al., 2017).

ProdLda takes the Bag-of-Words representation
of documents as input to learn two parameters µ
and σ2 of a Gaussian distribution. Then it sam-
ples a continuous latent representation from these
parameters, passing through a softplus1 to obtain
a document-topic distribution. Finally, this topic-
document representation is used to reconstruct the
Bag-of-Words (BoW) representation of the input
documents. Another difference between this ap-
proach and LDA is that it is based on Product of
Experts (PoE) (Hinton, 2002). These features make
ProdLDA consistently identifies more coherent and
segregated topics than LDA (Srivastava and Sutton,
2017; Sridhar et al., 2022). Also, given that it is
based on variational autoencoders, it can process
more data in lower execution times (Srivastava and
Sutton, 2017).

One of the shortcomings of LDA, and ProdLDA,
is that they take as input Bag-of-Words document
representations. These representations do not ac-
count for the syntactic and semantic relationships
among words which might impact the performance
in identifying high-quality topics (Bianchi et al.,
2021a). For instance, prior work indicates that
while ProdLDA learns topics of relatively high
quality, they are usually redundant, which indi-
cates poor segregation of the topics (Burkhardt and
Kramer, 2019).

In this context, Dieng et al. (2020) proposed
Embedding Topic Models (ETM) to incorporate se-
mantic relationships into topic models. ETM is a
generative probabilistic model that relies on word
embeddings (Mikolov et al., 2013b) to identify in-
terpretable topics. Word embeddings capture the

1SoftPlus is a smooth approximation to the ReLU function

semantic relationship between terms in a lower-
dimensional vector space, which also helps miti-
gate the shortcomings of LDA regarding its poor
performance in large heavy-tailed vocabularies.

Like LDA, the ETM algorithm model each doc-
ument as a mixture of topics, and each word is
assigned to a particular topic. The differences be-
tween these algorithms rely on the per-topic con-
ditional probability of a term. In ETM, the topics
are modeled as points in the embedding space, and
the topic-term distributions are proportional to the
inner product of the topic’s embeddings and each
term’s embeddings.

A shortcoming of ETM is that do not consider
syntactic relations among words. Prior work sug-
gests that the performance of the neural topic mod-
els might be boosted by injecting contextual infor-
mation. Bianchi et al. (2021a) and Bianchi et al.
(2021b) proposed Contextualized Topic Models
(CTM) to address this limitation. CTM is a fam-
ily of neural topic models that combines external
word representation with a bag of words represen-
tation to get more coherent topics than previous
approaches. While both ETM and CTM rely on
vector word representations, the first one uses static
word representation of words (e.g., word2vec). In
contrast, CTM uses contextual embeddings (e.g.,
SBERT (Reimers and Gurevych, 2019a)) to get
a richer syntactic and semantic representation be-
tween tokens (Zhao et al., 2021).

2.1 Topic modeling and Commonsense

Topic modeling algorithms such as CTM show
that adding contextual information to neural topic
models significantly improves the resulting topics’
coherence. Recent work has explored expanding
these contextualized representations by injecting
external knowledge, such as commonsense knowl-
edge (see (Bosselut et al., 2019)), to improve their
performance. Injecting commonsense knowledge
into topic modeling algorithms might help to ob-
tain a more semantically meaningful representa-
tion of the input document (Shah et al., 2021) and,
therefore, topics more aligned with commonsense
relations.

Commonsense knowledge has already been used
for different tasks such as question answering
(Bauer et al., 2018), sentiment analysis (Ghosal
et al., 2020; Ravi et al., 2021), and dialogue (Young
et al., 2018). However, only a few attempts to
incorporate commonsense knowledge into topic



modeling algorithms exist (Rajagopal et al., 2013;
Harrando and Troncy, 2021).

One of these scarce approaches is the Common-
sense Topic Model (CSTM) (Harrando and Troncy,
2021). This recently proposed topic modeling
technique augments clustering with knowledge ex-
tracted from ConceptNet (Speer et al., 2017) to find
more interpretable topics by humans. After evalu-
ating this approach on several datasets, the authors
claim their proposal generally finds more coherent
topics than the traditional LDA.

Considering these promising results, in this
project, we explore if we find more coherent and
diverse topics by injecting common-sense reason-
ing into a neural topic modeling algorithm. To
the best of our knowledge, we are the first to in-
ject common-sense knowledge into a neural topic
modeling algorithm. Moreover, we also explore
clustering commonsense-based embeddings as a
potential alternative to Neural topic models.

3 Methodology

We use the dense representation from embeddings
trained on commonsense knowledge graphs to
avoid dealing with problems such as missing edges
and relationships between unnormalized concepts.
In §3.1 we describe resources to obtain common-
sense embeddings. Then, we explain how we in-
corporate those embeddings into CTM (see §3.2),
and in a clustering-based technique (see §3.3).

3.1 Commonsense Embeddings

We use two well-known methods to generate
commonsense-aware embedding representations,
namely, Conceptnet Numberbatch (Speer et al.,
2017) and COMET (Bosselut et al., 2019).

ConceptNet Numberbatch embeddings are pre-
trained word vectors (i.e. Word2Vec (Mikolov
et al., 2013a)) retrofitted on the ConceptNet knowl-
edge graph (Speer et al., 2017). This is done by
optimizing the vectors with an objective function
such that the vectors are close to their original val-
ues and also close to their neighbors in the Con-
ceptNet knowledge graph represented as a sparse
symmetric term-term matrix.

COMmonsEnse Transformers
(COMET) (Bosselut et al., 2019) is a transformer
language model trained on two commonsense
knowledge graphs: (ConceptNet (Speer et al.,
2017) and ATOMIC (Sap et al., 2019)), to generate
the object token in the <subject, relation, object>

tuple. The hidden state representations of the
transformer encoders can be used as contextualized
embeddings for the input document.

3.2 Incorporating Commonsense Embeddings
into CTM

Using the embeddings described in §3.1, we first
create a commonsense-based document representa-
tion by following these steps. First, we extract all
the tokens from a document. Then, for each token,
we obtain their respective embedding in Concept-
Net Numberbatch. We represent a document as the
mean of those commonsense embeddings. Note
that in our experiments, we also consider applying
max pooling to those vector representations.

We follow a similar pipeline when using
COMET. First, we encode the document’s entire
text using the COMET encoder. Then, we obtain
the last hidden states of the encoder. Again, we
represent a document as the mean of those hidden
states. During our experiments, we also consider
applying max pooling to those representations.

Contextualized Topic Models (CTM) use con-
textualized embeddings to account for word order
and contextual information, overcoming the lim-
itations of Bag-of-Word models. In their experi-
ments, Bianchi et al. (2021b) use Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019b) embed-
dings to get a representation of the documents.
SBERT is a modification of the BERT network
using siamese and triplet networks that is able to
derive semantically meaningful sentence embed-
dings.

To inject commonsense knowledge, we decide
to concatenate the commonsense embeddings (see
Section 3.1) to the SBERT embeddings. The intu-
ition is that a neural topic model such as CTM can
perform better by having a better representation of
documents.

3.3 Clustering Commonsense Embeddings

An alternative view to the traditional LDA-based
methods is directly congregating embeddings to
get semantically similar word clusters (Sia et al.,
2020). For this method, we first extract normalized
ConceptNet nodes from the input documents using
CoCo-Ex (Becker et al., 2021) before clustering
the aggregated representations to obtain the topi-
cal clusters. Finally, we construct the topic-word
distribution p(w|t) based on the distance between
word embeddings and the topic cluster centroids.



Since ConceptNet nodes are not normalized (e.g.,
bake cake, baking cakes), they often consist of sev-
eral different nested phrase types (e.g., buying the
ingredients of the recipe, a friend was celebrating a
birthday), and usually contain uninformative, over-
specific, or misspelled concepts, we first extract the
normalized concept mapping using an off-the-shelf
tool, CoCo-Ex.

In a nutshell, CoCo-Ex first extracts candidate
phrases from the input text based on part-of-speech
(noun, verb, adjective phrases) before lemmatizing
the candidate phrases to create a dictionary based
on ConceptNet nodes. For each entry in the re-
sulting dictionary, the key is a lemmatized word
contained in the concept nodes (e.g., dog), while
the value is a list of ConceptNet nodes containing
this lemma (e.g., dog, dogs, my dog, my neighbor’s
dog). After a filtering step that removes matched
phrases based on embedding similarity, we use the
dictionary key (word lemma) as the extracted nor-
malized concept.

To obtain the embedding representation of the
normalized concept, we take the average embed-
ding vector over its list of phrases (i.e., value in
the dictionary). We then perform clustering on con-
cept embeddings based on their cosine similarity.
In this work, we employ Spectral Clustering (Ng
et al., 2001) to divide the fully-connected graph
(defined by the pairwise cosine similarity matrix)
into sub-graphs. Note that this is identical to the
normalized cuts algorithm (Shi and Malik, 2000)
used in previous work (Joty et al., 2013). To ac-
count for the word importance, we also weigh the
normalized concepts by their occurrence frequency
in the corpus. In practice, this is done by assigning
each concept to a frequency bin (1-50). Finally,
to directly compare against LDA-based methods,
we create the topic-word distribution p(w|t) by
normalizing the distance between each concept em-
bedding to the cluster centroid for topic t.

4 Experiments

In this section, we start by describing the datasets
(§4.1) and automatic evaluation metrics (§4.2)
used in our experiments before presenting and dis-
cussing our results in §4.3.

4.1 Datasets

To evaluate our models across a variety of domains,
we train and evaluate our models on three datasets:

Dataset Domain Docs Vocabulary

20Newsgroups Email 18,173 2,000
Wiki20K Article 20,000 2,000
Tweets2011 Microblog 2,471 5,098

Table 1: Statistics of the datasets used

20NewsGroups2, Wiki20K (a collection of 20,000
English Wikipedia abstracts), and Tweets20113. Ta-
ble 1 shows the domain and statistics of the three
datasets.

4.2 Metrics

We evaluate the quality of topic models based on
topic coherence (topic keywords must shame some
level of semantic relatedness) and topic segregation,
which measures the lexical and semantic overlap
between topics. Note that a higher value indicates a
better performance in all of the metrics mentioned
below.

Normalized Pointwise Mutual Information
(NPMI) (Lau et al., 2014) is one of the most well-
known automatic coherence metric. It measures
how much more likely the most representative
terms of a topic co-occur than if they were in-
dependent. NPMI returns a high score when the
top N words that describe a topic, summed over
all pairs wi and wj , have high joint probability
P (wj , wi) compared to their marginal probabil-
ity (Hoyle et al., 2021). The range of NPMI is
between [-1,1], whereas a higher value indicates a
more coherent topic. Usually, NPMI is calculated
by using a sliding window of 10 words to identify
co-occurrences.

Cv (Röder et al., 2015) uses a variation of NPMI
to calculate the coherence over a sliding window
with size 110. It calculates the co-occurrence of a
word of a given topic against all words of the same
topic. It ranges between [0,1], where a higher value
suggest more coherent topics.

External word embeddings topic coherence
(WECO) (Ding et al., 2018) provides an additional
measure of how similar the words in a topic are.
It is based on word embeddings (Mikolov et al.,
2013b). First, it is computed as the average pair-
wise cosine similarity of the word embeddings of
the top 10 words in a topic. Then, the overall aver-
age of those values for all the topics is reported.

2http://qwone.com/ jason/20Newsgroups/
3https://trec.nist.gov/data/tweets/



Topic diversity (TD) (Dieng et al., 2020) is
computed as the percentage of unique words in the
top 25 words of all topics. Its range is between
[0,1]. A value near zero suggests redundant top-
ics, while a value near one suggests more different
topics.

Inversed Rank-Biased Overlap (I-
RBO) (Bianchi et al., 2021a) evaluates how
diverse the topics generated by a single model are.
When comparing topics, the rank of each term
matters (Terragni et al., 2021); it is not the same if
topics share words at high ranks as if they do at
low ranks. I-RBO is the reciprocal of the standard
RBO (Webber et al., 2010), and it is computed by
considering the top 10 words of topics. In this
metric, two topics that share some of the keywords,
although at different rankings, are penalized less
than two topics that share the same keywords at
the highest ranks. It ranges between [0,1].

4.3 Results

We compute all the metrics for 25, 50, and 75 top-
ics. We average results for each metric over 30 runs
of each model. Table 2 shows the effects of incor-
porating commonsense embeddings into CTM. We
identify that incorporating commonsense embed-
dings into model input does not strongly impact
the performance of CTM. We hypothesize that the
model is less sensitive to the quality of the sentence
embedding (in contrast to BoW), which has been
found in prior work using VAE for text modeling
(Kamoi and Fukutomi, 2018). This is confirmed in
our results found in Table 3, where replacing the
input with CLIP embeddings (Radford et al., 2021)
(which were trained on text-image pairs) achieves
similar performance in two of the three datasets.
We leave the detailed analysis of this approach as
an exciting direction for future work.

When comparing clustering-based models with
CTM (Table 2), we notice a significant improve-
ment in three out of the five metrics (WECO, TD,
and I-RBO), while trailing behind CTM in the other
two (NPMI and Cv). Note that since NPMI and Cv
are coherency metrics based on the co-occurrences
of words in the document, it is natural that the
clustering-based method performs poorly as it is
simply performing semantic matching on a word
level. More interestingly, the superior performance
of the clustering-based model on the three other
metrics reveals a potential weakness in the CTM.
Since CTM is trained on document-level input, it

Model NPMI Cv WECO TD I-RBO

Results for the 20NewsGroups Dataset

CTM 0.11 0.68 0.17 0.83 0.99
CTM+CLIP 0.11 0.67 0.17 0.83 0.99
CTM+COMET⋆ 0.10 0.67 0.17 0.80 0.99
CTM+COMET 0.11 0.67 0.17 0.82 0.99
CTM+Numberbatch⋆ 0.10 0.67 0.17 0.82 0.99
CTM+Numberbatch 0.11 0.67 0.17 0.83 0.99
Clustering 0.08 0.64 0.30 0.92 1.00
Clustering† 0.06 0.60 0.30 0.82 1.00

Results for the Wiki20K Dataset

CTM 0.19 0.74 0.21 0.90 1.00
CTM+CLIP 0.19 0.74 0.21 0.91 1.00
CTM+COMET⋆ 0.18 0.75 0.21 0.91 1.00
CTM+COMET 0.18 0.74 0.21 0.91 1.00
CTM+Numberbatch⋆ 0.19 0.75 0.21 0.91 1.00
CTM+Numberbatch 0.19 0.74 0.21 0.91 1.00
Clustering 0.04 0.50 0.35 0.95 1.00
Clustering† 0.02 0.48 0.35 0.93 1.00

Results for the Tweets2011 Dataset

CTM 0.07 0.49 0.16 0.85 0.99
CTM+CLIP 0.07 0.49 0.15 0.86 0.99
CTM+COMET⋆ 0.08 0.50 0.16 0.89 0.99
CTM+COMET 0.07 0.49 0.16 0.89 0.99
CTM+Numberbatch⋆ 0.07 0.49 0.16 0.87 0.99
CTM+Numberbatch 0.08 0.50 0.16 0.86 0.99
Clustering -0.45 0.54 0.33 0.99 1.00
Clustering† -0.42 0.50 0.33 0.98 1.00

Table 2: Averaged results over 25 topics. The best
results are marked in bold. ⋆ indicates max pooling,
† indicates weighted by keywords-frequency. We use
Numberbatch as an abbreviation for ConceptNet Num-
berbatch

does not explicitly model the semantic relation-
ships between words in the corpus. Moreover, since
the input document is represented as a single vector,
it is hard for the model to distinguish the seman-
tic representation between individual words when
the squished representation of the input document
is mapped to the latent topic variables. In future
work, we would like to explicitly model this rela-
tionship by incorporating the corpus-level semantic
relationship between words into CTM.

In the Appendix, we include the experiment re-
sults for 50 and 75 topics in Table 4 and Table 5, re-
spectively. In summary, the performance degrades
as the number of topics increases across all models.
However, the differences between models follow
the same patterns as displayed in Table 2.

5 Lessons Learned

In this project, we gained a better understanding of
the advantages and disadvantages between LDA-
based topic models (NTMs) and clustering-based



Embeddings NPMI Cv WECO TD I-RBO

Results for the 20NewsGroups Dataset

SBERT 0.11 0.68 0.17 0.83 0.99
CLIP -0.01 0.57 0.19 0.44 0.89
COMET⋆ 0.10 0.64 0.17 0.73 0.98
COMET 0.10 0.66 0.17 0.82 0.99
Numberbatch⋆ 0.07 0.62 0.17 0.70 0.97
Numberbatch 0.10 0.66 0.18 0.74 0.98

Results for the Wiki20K Dataset

SBERT 0.19 0.74 0.21 0.90 1.00
CLIP 0.18 0.74 0.21 0.89 1.00
COMET⋆ 0.18 0.74 0.20 0.90 1.00
COMET 0.18 0.74 0.21 0.91 1.00
Numberbatch⋆ 0.18 0.74 0.21 0.87 1.00
Numberbatch 0.19 0.73 0.21 0.90 1.00

Results for the Tweets2011 Dataset

SBERT 0.07 0.49 0.16 0.85 0.99
CLIP 0.09 0.52 0.16 0.77 0.98
COMET⋆ 0.07 0.50 0.16 0.85 0.99
COMET 0.07 0.50 0.16 0.87 0.99
Numberbatch⋆ 0.08 0.50 0.16 0.73 0.98
Numberbatch 0.08 0.50 0.16 0.72 0.98

Table 3: Performance of using different embeddings to
represent the input documents in CTM. Averaged results
over 25 topics. Best results are bold. ⋆ indicates max
pooling.

topic models. Also, we learned more about how to
estimate the quality of topics and identify automatic
metrics’ limitations (e.g., measuring topic diversity
only on the top ten keywords is not very helpful).

We have also developed skills to improve our
algorithms in terms of space and time complexity.
Currently, we can evaluate topic models five times
faster than during our project update. While the
initial research question was promising, we believe
a more thorough literature review prior to the start
of our project would be much more beneficial, as it
would provide a clearer direction for us to proceed.

Regarding the logistical planning, since we have
divided the approach into two non-overlapping
components (CTM vs. clustering), we find it a
lot easier to work asynchronously. Lastly, from
a time-management perspective, we find that we
underestimated the efforts of changing the inner
workings of neural topic models.

6 Reflections and Future Work

Overall, we believe our project was somewhat suc-
cessful in answering our initial research question.
From the initial stages of this project, we were

able to gain a better understanding of the inner
workings of the Variational Autoencoders used for
topic modeling, as well as the technical details of
LDA and Variational Inference. Through our exper-
iments, we were also able to understand the trade-
off between clustering-based and NTM-based ap-
proaches which provides motivation for our future
work.

Moreover, we were able to run our experiments
in three full datasets, and we evaluated our results
considering multiple topics’ coherence and diver-
sity metrics. We have also evaluated our models
several times under different settings (e.g., differ-
ent number of topics). Our current pipeline makes
it easier to expand this work.

While there are some obvious weaknesses in our
work, including the lack of human evaluation and
the failure to propose a novel approach to integrate
these two lines of work (due to time constraints),
our extensive evaluation does provide a clear indi-
cation of the trade-off between the two methods,
which serves as a strong motivation for future work.

For future work, we would like to perform a
more detailed analysis of the two methods (e.g.,
the entropy of topic distribution over vocab, the ge-
ometry of latent topic variables) to gather detailed
insights regarding the models’ behavior. Further,
we would like to use visualizations to conduct qual-
itative evaluations using human participants (e.g.,
measuring topic coverage and topics’ usefulness
for real-world applications) and perform experi-
ments on other datasets (e.g., GoogleNews, BBC).
In the appendix, we include a figure to show how
an interactive topic modeling visualization tool can
help humans to interpret and analyze intermediate
results.

Finally, we would like to propose a novel ap-
proach combining the advantage of clustering and
NTM-based models. In this vain, we are currently
experimenting with penalizing the topic-word dis-
tribution of the CTM, so the keywords from each
topic are more semantically similar.
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7 Appendix

Our source code is available under request
at https://github.com/gonzalezf/
532g_project.

We provide a high-level schema of the archi-
tecture of CTM in Figure 1. We also provide in-
termediate results of a topic model visualized on
pyLDAvis (Sievert and Shirley, 2014) in Figure 2.

We also run our experiments considering a differ-
ent number of topics (i.e., 50, and 75). Table 4 and
Table 5 show the result of adding commonsense
embeddings to CTM to topic models with 50 and
75 topics, respectively. Table 6 and Table 7 shows
the results of using a different type of embeddings
to represent the input documents into CTM for 50
and 75 topics, respectively.

Figure 1: High-level schema of the architecture for
CTM.

Figure 2: We used pyLDAvis (Sievert and Shirley,
2014), an interactive topic modeling visualization tool,
to interpret topics and analyze the quality of our inter-
mediate results.
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Model NPMI Cv WECO TD I-RBO

Results for the 20NewsGroups Dataset

CTM 0.11 0.68 0.17 0.70 0.99
CTM+CLIP 0.11 0.67 0.17 0.71 0.99
CTM+COMET⋆ 0.11 0.67 0.17 0.66 0.99
CTM+COMET 0.11 0.67 0.17 0.72 0.99
CTM+Numberbatch⋆ 0.11 0.67 0.17 0.70 0.99
CTM+Numberbatch 0.11 0.67 0.17 0.72 0.99
Clustering 0.06 0.61 0.29 0.77 1.00
Clustering† 0.05 0.60 0.29 0.71 1.00

Results for the Wiki20K Dataset

CTM 0.18 0.72 0.20 0.75 1.00
CTM+CLIP 0.18 0.72 0.20 0.77 1.00
CTM+COMET⋆ 0.18 0.71 0.20 0.76 1.00
CTM+COMET 0.18 0.71 0.20 0.78 1.00
CTM+Numberbatch⋆ 0.18 0.72 0.20 0.75 1.00
CTM+Numberbatch 0.18 0.72 0.20 0.76 1.00
Clustering 0.01 0.49 0.36 0.83 1.00
Clustering† 0.05 0.60 0.29 0.71 1.00

Results for the Tweets2011 Dataset

CTM 0.11 0.51 0.16 0.59 0.98
CTM+CLIP 0.11 0.51 0.16 0.62 0.98
CTM+COMET⋆ 0.12 0.52 0.16 0.66 0.98
CTM+COMET 0.11 0.51 0.16 0.65 0.98
CTM+Numberbatch⋆ 0.11 0.52 0.16 0.64 0.98
CTM+Numberbatch 0.11 0.51 0.16 0.62 0.98
Clustering -0.44 0.54 0.34 0.97 1.00
Clustering† -0.42 0.51 0.33 0.93 1.00

Table 4: Averaged results over 50 topics. The best
results are marked in bold. ⋆ indicates max pooling, †
indicates weighted by keywords-frequency

Model NPMI Cv WECO TD I-RBO

Results for the 20NewsGroups Dataset

CTM 0.10 0.66 0.17 0.59 0.99
CTM+CLIP 0.10 0.66 0.17 0.59 0.99
CTM+COMET⋆ 0.09 0.65 0.17 0.54 0.99
CTM+COMET 0.10 0.65 0.17 0.61 0.99
CTM+Numberbatch⋆ 0.10 0.66 0.17 0.58 0.99
CTM+Numberbatch 0.11 0.66 0.17 0.61 0.99
Clustering 0.03 0.57 0.27 0.64 1.00
Clustering† 0.04 0.58 0.28 0.57 1.00

Results for the Wiki20K Dataset

CTM 0.17 0.71 0.19 0.59 0.99
CTM+CLIP 0.17 0.70 0.19 0.60 0.99
CTM+COMET⋆ 0.17 0.70 0.19 0.61 1.00
CTM+COMET 0.17 0.70 0.19 0.62 1.00
CTM+Numberbatch⋆ 0.17 0.71 0.19 0.60 0.99
CTM+Numberbatch 0.17 0.70 0.19 0.61 1.00
Clustering -0.03 0.45 0.33 0.67 1.00
Clustering† -0.03 0.44 0.32 0.63 1.00

Results for the Tweets2011 Dataset

CTM 0.11 0.52 0.16 0.44 0.98
CTM+CLIP 0.12 0.52 0.15 0.45 0.98
CTM+COMET⋆ 0.12 0.52 0.15 0.50 0.98
CTM+COMET 0.11 0.51 0.16 0.47 0.98
CTM+Numberbatch⋆ 0.12 0.52 0.15 0.48 0.98
CTM+Numberbatch 0.12 0.53 0.16 0.46 0.98
Clustering -0.44 0.54 0.33 0.91 1.00
Clustering† -0.43 0.52 0.32 0.86 1.00

Table 5: Averaged results over 75 topics. The best
results are marked in bold. ⋆ indicates max pooling, †
indicates weighted by keywords-frequency



Embeddings NPMI Cv WECO TD I-RBO

Results for the 20NewsGroups Dataset

SBERT 0.11 0.68 0.17 0.70 0.99
CLIP 0.00 0.58 0.20 0.31 0.87
COMET⋆ 0.10 0.64 0.17 0.56 0.98
COMET 0.10 0.66 0.17 0.70 0.99
Numberbatch⋆ 0.08 0.62 0.17 0.53 0.97
Numberbatch 0.10 0.66 0.19 0.53 0.98

Results for the Wiki20K Dataset

SBERT 0.18 0.72 0.20 0.75 1.00
CLIP 0.19 0.72 0.19 0.70 0.99
COMET⋆ 0.19 0.73 0.19 0.74 1.00
COMET 0.18 0.72 0.20 0.77 1.00
Numberbatch⋆ 0.20 0.74 0.20 0.65 0.99
Numberbatch 0.18 0.72 0.20 0.71 1.00

Results for the Tweets2011 Dataset

SBERT 0.11 0.51 0.16 0.59 0.98
CLIP 0.08 0.51 0.16 0.47 0.97
COMET⋆ 0.11 0.52 0.16 0.61 0.98
COMET 0.11 0.52 0.16 0.61 0.98
Numberbatch⋆ 0.08 0.52 0.16 0.47 0.97
Numberbatch 0.08 0.50 0.16 0.45 0.97

Table 6: Performance of using different embeddings to
represent the input documents in CTM. Averaged results
over 50 topics. Best results are bold. ⋆ indicates max
pooling.

Embeddings NPMI Cv WECO TD I-RBO

Results for the 20NewsGroups Dataset

SBERT 0.10 0.66 0.17 0.59 0.99
CLIP -0.01 0.57 0.19 0.26 0.86
COMET⋆ 0.09 0.64 0.18 0.46 0.98
COMET 0.09 0.64 0.17 0.59 0.99
Numberbatch⋆ 0.09 0.63 0.17 0.43 0.97
Numberbatch 0.10 0.66 0.19 0.43 0.97

Results for the Wiki20K Dataset

SBERT 0.17 0.71 0.19 0.59 0.99
CLIP 0.18 0.72 0.19 0.51 0.99
COMET⋆ 0.17 0.71 0.19 0.56 0.99
COMET 0.17 0.70 0.19 0.61 1.00
Numberbatch⋆ 0.19 0.73 0.19 0.47 0.99
Numberbatch 0.18 0.71 0.19 0.54 0.99

Results for the Tweets2011 Dataset

SBERT 0.11 0.52 0.16 0.44 0.98
CLIP 0.08 0.51 0.16 0.35 0.97
COMET⋆ 0.10 0.52 0.16 0.44 0.97
COMET 0.09 0.51 0.16 0.43 0.98
Numberbatch⋆ 0.07 0.51 0.15 0.35 0.97
Numberbatch 0.06 0.50 0.16 0.32 0.97

Table 7: Performance of using different embeddings to
represent the input documents in CTM. Averaged results
over 75 topics. Best results are bold. ⋆ indicates max
pooling.


